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Abstract. A new heuristic filter, called Continuous Ant Colony Filter,
is proposed for non-linear systems state estimation. The new filter formu-
lates the states estimation problem as a stochastic dynamic optimization
problem and utilizes a colony of ants to find and track the best estima-
tion. The ants search the state space dynamically in a similar scheme to
the optimization algorithm, known as Continuous Ant Colony System.
The performance of the new filter is evaluated for a nonlinear benchmark
and the results are compared with those of Extended Kalman Filter and
Particle Filter, showing improvements in terms of estimation accuracy.
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1 Introduction

In many engineering applications, one needs to estimate the states of a dynamic
system. A state estimation problem is defined as follows: given the mathemati-
cal model of a dynamic system, it is desired to estimate the time-varying states
using a noisy measurement. Estimation problems are often categorized as predic-
tion, filtering and smoothing, depending on intended objectives and the available
observations[I]. Here, the domain of focus is filtering, which is usually referred
as the extraction of true signal from the observations. Filters are usually mini-
mizing a given objective function, while they are working. Such filters are called
optimal filters[2].

Optimal filters are categorized to recursive and batch filters[I][3]. A batch
filter, e.g. least square filter, uses the complete history of measurements to es-
timate unknown states. A Recursive filters, in comparison, has the ability to
receive and process measurements sequentially. Recursive filters consist of two
essentially stages: prediction and update[3]. Prediction uses the estimated states
of the previous time step to produce an initial estimate of the current step. This
stage is also known as the priori state estimation because it does not use the
observations, obtained in the current time step. In update stage, the priori state

Z. Li et al. (Eds.): ISICA 2012, CCIS 316, pp. 20-EJ] 2012.
(© Springer-Verlag Berlin Heidelberg 2012



A Novel Heuristic Filter Based on ACO 21

estimation is combined with the current observation to refine the state estima-
tion. This improved estimation is also termed as the posterior state estimation.
The dynamic states can be estimated using the posterior Probability Density
Function (PDF), obtained based on the received measurement. If either the sys-
tem or measurement model is nonlinear, the posterior PDF will not be Gaussian,
even if the measurement and the process noises are assumed to be Gaussian.

Several recursive filters can be found within the literature, the most well-
known of which are Kalman Filter (KF)[4], Extended Kalman Filter (EKF)[5],
Unscented Kalman Filter (UKF)[6], Particle Filter (PF) [7] and etc.

Recursive filters can also be categorized to linear and nonlinear filters[I][3].
In a linear filter, such as KF, both system and measurement models are linear.
KF assumes the posterior PDF to be Gaussian and can be characterized by a
mean and a covariance. In opposite, a nonlinear filter, such as EKF, UKF and
PF, is used to estimate the states of a nonlinear dynamic system when either
the system or the measurement model is nonlinear.

Analytical approximation and states sampling are two common approaches in
nonlinear filtering. In the first approach, the nonlinear functions of the mathe-
matical model are linearized and then a linear filter such as KF is used as well.
EKF is an example of filters, work based on analytical approximation. Unlike
to EKF, UKF is a sample based filter. It does not approximate the nonlinear
mathematical model. Instead, it approximates the posterior PDF by a set of
deterministically chosen samples. UKF is also referred to as a linear regression
Kalman filter, because it is based on statistical linearization rather than analyt-
ical ones[3].

The authors categorize sample based filters to mathematical and heuristic
approaches. UKF can be taken a mathematical sample based filter to account,
since it uses a deterministic sampling process, the general estimation mathemat-
ics and the mathematical operators such as unscented transform. In comparison,
there are several sample based filters that utilize heuristic algorithms to sample
the particles and to improve the position of them. These filters can be called
heuristic filters.

PF is an example of heuristic filters. It works based on point mass (or parti-
cle) representation of the probability densities[]. Unlike to UKF, PF represents
the required posterior PDF by a set of random samples instead of deterministic
ones. Also, it uses a re-sampling procedure to reduce the degeneracy of parti-
cle set. The standard re-sampling procedure copies the important particles and
discards insignificant ones based on their fitness. This strategy suffers from the
gradual loss of diversity among the particles, known as sample impoverishment.
Different re-sampling strategies have been proposed in the literature, such as
Binary Search[d], Systematic Re-sampling[I0] and Residual Re-sampling[§].

PF has several variants with different sampling and re-sampling procedures.
All sampling procedures, utilized in PFs; can be derived from the Sequential
Importance Sampling (SIS) algorithm[I1] by the appropriate choice of impor-
tance sampling density[3]. The combination of SIS and Systematic Re-sampling
is called Generic PF (GPF)[3]. Sampling Importance Resampling (SIR) filter[9],
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Boostrap Particle Filter (BPF)[12], Auxiliary Sampling Importance Resampling
(ASIR) filter[I3], Unscented Particle Filters (UPF)[I4], Extended Particle Fil-
ters (EPF) [10], Multiple-model Particle Filter (MMPF)[12], Regularized Parti-
cle Filter (RPF)[15] and Markov Chain Monte Carlo (MCMC)[16] are example
variants of PF.

Recently, some heuristic optimization algorithms have been augmented with
PFs. Genetic Algoritm (GA) and PF have been combined to increase diversity of
samples after re-sampling[I7][18]. Simulated Annealing (SA) has been introduced
into PF to improve its performance[I9]. A local search method has been inserted
into particle filter to reduce the sample size and improve the efficiency[20]. Parti-
cle Swarm Optimization (PSO) has been introduced into PF to solve the particle
impoverishment and sample size dependency problems[2I]. Ant Colony Opti-
mization (ACO) has been utilized to improve the re-sampling process[22][23].
ACO for Real domains (ACOR) has been incorporated into PF to optimaize the
sampling process[24].

The state estimation problem can be formulated as a stochastic dynamic
optimization problem. Therefore, different ideas of heuristic optimization can be
extended and modified to solve this problem. Here, the authors have proposed
a new heuristic filter for non-linear systems state estimation, based on their
previously developed metaheuristic, known as Continuous Ant Colony System
(CACS)[25]. The proposed filter is called Continuous Ant Colony Filter (CACF).
CACF can be categorized as a heuristic sample based filter. It utilizes a colony of
moving ants, the average positions of which is returned as the current estimation.
In this filter the estimation of the current states is formulated as a stochastic
dynamic optimization problem and an optimization algorithm, based on CACS
is utilized to iteratively find and track the best estimation.

This paper is organized as follows: A state estimation problem is formulated
in section 2. Section 3 is devoted to a detailed description of the new estima-
tion algorithm. The experimental results are provided in section 4. The final
Conclusion is made in section 5.

2 Problem Formulation

The problem is to estimate the states of a nonlinear dynamic system. Discrete-
time state space approach is utilized to model the evolution of system and the
noisy measurements. The states are assumed to be evolved according to the
following stochastic model:

i = fr(®r—1,v5-1) (1)

where f is a known, possibly nonlinear function of the state vector xx_1, vg_1
is referred to as the process noise, and k is the time counter. The objective of
a nonlinear filter is to recursively estimate xj, from the available measurements,
2. The measurements are related to the states via the measurement equation,
stated as follows:

zk = hy(z, wi) (2)
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where hyj is a known, possibly nonlinear function and wy is the measurement
noise. The noise sequences, v, and wy, are assumed to be white, with known
probability density functions and mutually independent. A graphical illustration
of the evolution and the measurement models can be depicted as in Fig.[Il The
initial state, xg, is assumed to have a known PDF p(z() and to be independent
of the noise sequence.

Zk1 Zi+1
hk_1 hk—l
£, fie1
Xkt =E=m

Fig. 1. Process and measurement models of a dynamic system

3 Continuous Ant Colony Filter

In this section, the new heuristic filter is introduced as a tool for nonlinear
systems state estimation. First, the general structure of the filter is presented.
Then each constructive module is discussed in detail.

3.1 General Setting Out of the Algorithm

Fig. @ shows the general iterative structure of CACF. A high level description
of the sequential steps is shown in this figure. The parameters of CACF and
the initial position of ants are set during the initialization, as discussed in the
section 3.2.

CACF has two loops: a main outer loop, iterating every time a new mea-
surement is entered, and an inner loop, iterates to find the best estimation of
the current states, corresponding to the entered measurement. The inner loop
propagates the initial distribution of ants, at first. Then, the output, estimated
by each ant, is made. The estimated outputs are compared with the real mea-
surement and each ant is assigned a cost, based on the quality of its estimation.
Ants use their experience to update the state space pheromone distribution. As
in CACS[25], a Gaussian function is utilized to model the pheromone distribu-
tion over the continuous state space. Ants use this pheromone distribution to
move from their current position toward the minimum cost destinations. The
destinations are chosen using a normal PDF. The inner loop is terminated after
a predefined number of iterations. Finally, the current state estimation is made
using a mean operator. In the following subsections, these steps are discussed in
detail.



24 H. Nobahari and A. Sharifi

_ New observation

b}

L

Propagation of ants " location

M B

Measurement update

!

| Compute Cost Function |

!

| Update Pheromone Distribution

!

‘ Move Ants to New Location ‘

Stopping Condition
Reachad?

States
Estimation

More Observations?

Fig. 2. Continuous ant colony filter (CACF) algorithm
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3.2 Initialization

The new algorithm has some control parameters that must be set before the exe-
cution of the algorithm. The inner loop is terminated after q iterations. Moreover,
the initial position of ants is initialized using a uniform random generator.

3.3 Propagation and Measurement Update

At the beginning of the i-th iteration of the inner loop, the position of ant j at
time k — 1, defined as, x;” is propagated as follows:

&y = fr(zy’ |, v)) (3)

Then the current output, estimated in iteration i by ant j at time k, noted by
zy? , is calculated as follows:

2y = hi(@) (4)

3.4 Compute Cost Function

Each ant is assigned a cost, based on the quality of its current position. The cost
function is defined as the square error between the estimated output, 2”7, and
the real measurement, z;. Therefore, the cost, assigned in iteration i to ant j at
time k, is calculated as follows:

5= (&7 - ) (5)

In this way, the cost function is calculated in different points of the state space
and some knowledge about the problem is acquired, used later to update the
pheromone distribution.

3.5 Update Pheromone Distribution

CACEF utilizes the same pheromone model and pheromone updating rule, as in
CACSJ25]. During any iteration, phermone distribution will be updated using
the acquired knowledge from the evaluated points by ants. Pheromone updating
rule of CACF can be stated as follows: during any iteration, the cost is calculated
for the new points, explored by the ants. Then, the best point, found up to the
1th iteration, at time k£ — 1, is assigned to x};_me.

Also, the standard deviation of the pheromone distribution (% _,) is updated
based on the cost of the evaluated points and the aggregation of those points
around w}ncfl’mm. To satisfy simultaneously the fitness and aggregation criteria,
the concept of weighted variance, proposed in [25], is defined as follows:

Z;‘nzl fid _fli ) (w;cil - wL—l,wninP
k=17 Jk—1,min
m 1 (6)

(0h-1)” = > s
=1 f}iﬂl_fli—l‘m,in



26 H. Nobahari and A. Sharifi

Here, m is the number of ants. This strategy means that the center of region,
discovered during the subsequent iteration, is the last best point and the nar-
rowness of its width depends on the aggregation of the other competitors around
the best point. It should be noted that after termination of the inner loop, the
standard deviation of the pheromone distribution is increased by an Expansion
Factor (EF) to increase the exploration of the filter when the new measurement
is entered.

3.6 Movement of the Ants

During any iteration, ants move from their current position to their destination
using the current pheromone distribution. Pheromone distribution is modeled
using a normal PDF, the center of which is the best point (&_; ,;,), found
from the first iteration and its variance depends on the aggregation of other ants
around the best one. Normal PDF permits all points of the continuous state space
to be chosen, either close to or far from the best point. As stated in section 3.2,
in the first iteration, the position of ants is initialized using a uniform random
generator, whereas for all subsequent iterations, ants chose their destination
using the updated pheromone distribution, based on equation (6).

3.7 Stopping Condition

CACF has two loops, each with its own specific stopping condition. The inner
loop stops when the maximum number of iterations (q) is reached. The outer
loop stops when the measurements are finished.

3.8 States Estimation

After termination of the inner loop, the states are estimated based on the average

position of top ants:
me

A 1 XN
T = z;’ 7
¢ mizj ; (7)

where m; denote number of top ants.

4 Results and Discussion

In this section, the performance of the new filter is investigated for a benchmark,
taken from the literature. This study is intended to provide a comparison of the
proposed state estimation method with more established approaches. Table 1
shows the tuned parameters of CACF.

A nonlinear single variable economic model[I4], defined by (8) and (9), is
employed to test the performance of CACF and compare it with that of EKF
and Generic PF.

x(t+1) =1+ sin(4 x 10™27t) + 0.5z(t) + v(t) (8)
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x(t)?
(1) = { y e 0O 1= o)
—24+ "W () t > 30
where v(t) and w(t) stand for zero-mean white noise and Gamma distribution,
respectively[22]. The variance of w(t) is 1 x 107> and the parameters k and 6 of
Gamma distribution are equal to 7 and 2, respectively[26].

Considering the measurement and process noises, the state sequence x; is
estimated using CACF and the results are compared with those of EKF and
Generic PF, as reported in[21][22]. To make the results comparable with those
of[22], the simulations are done from t = 1 to 60 and the average performance,
obtained for 30 different runs are compared. Fig. [3] represents a sample output
of CACF and shows that this filter can track the true signal accurately.

Table 2 shows the mean of the Root Mean Square Error (RMSE) obtained
three filters. It can be observed that CACF produces comparable and even better
results than EKF and Generic PF.

Table 1. Parameters of CACF

Parameter Value
Numbers of Ants(m) 200
Maximum Number of Iterations(q) 10
Expansion Factor(EF) 2
Number of Top Ants 80
55
501 * True state

CACF estimate

state

10 I I I I I
0 10 20 30 40 50 60

time step

Fig. 3. The estimation history of CACF for the nonlinear single variable economic
model
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Table 2. Comparison of CACF with EKF and Generic PF
Filter Mean RMS Error RMSE Percentage (EKF=100%)
EKF[22] 0.9809 100
Generic PF[22] 0.7792 79
CACF 0.6513 66.398
Conclusion

In this paper a new heuristic sample based filter, was proposed for non-linear
systems state estimation. The proposed filter, called CACF, models the estima-
tion problem as a stochastic dynamic optimization problem and an optimization
scheme, based on CACS, was utilized to solve this problem. CACF was tested
over a benchmark to compare its results with those of EKF, as a mathematical
nonlinear approach and PF, as a heuristic approach. The overall results show
that CACF can properly compete with these well-known filters. One of the most
important features of CACF is its simplicity.
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